Development of a process chain for multi-stage sheet metal forming of high-strength aluminium alloys

Author:

Günzel J,Hauß J,Gaedigk C,Bergmann J,Groche P

Abstract

Abstract The high-strength aluminium alloys EN AW-6082 and -7075 are characterized by low density and high strength but also limited cold formability and pronounced springback behaviour in the ultra-high-strength T6 state. In order to exploit their lightweight design potential, temperature-supported process routes such as warm or hot forming are applied. Alternatively, there is the possibility of cold forming preconditioned semi-finished products at the expense of the initial material properties. Common to all variants are complex interrelationships due to linked plant periphery resulting from up- and downstream heat treatments. In addition, occurring heat transfers in temperature-supported process routes or strain hardening effects during cold forming lead to reduced formability. Especially for multi-stage forming processes, as they are required for complex components, the above-mentioned process routes reach their limits. The different requirements of the four single-stages (deep drawing, blanking, collar drawing and upsetting) for the production of a demonstrator geometry with adapted wall thicknesses make a new type of temperature control necessary. This paper shows that the combination of temperature-supported and multi-stage forming contributes to a significant increase in formability. The temperature-controlled forming tool used for this purpose enables an inline heating of the components during the process, so that an industrially feasible and economical overall process chain for the fabrication of the demonstrator geometry out of those alloys is convertible.

Publisher

IOP Publishing

Subject

General Medicine

Reference20 articles.

1. Aluminium in Innovative Light-Weight Car Design;Hirsch;Materials Transactions,2011

2. Formability and lubrication of a B-pillar in hot stamping with 6061 and 7075 aluminum alloy sheets;Liu;Procedia Engineering,2017

3. Study of Springback for High Strength Aluminium Alloys Under Hot Stamping;Cai,2019

4. Comparison of different forming methods on deep drawing and springback behavior of high-strength aluminum alloys;Rigas;Materials Science and Engineering,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3