Design and Implementation of an Autonomous Robot Manipulator for Pick & Place Planning

Author:

Nayab Zafar Mohd.,Mohanta J. C.,Sanyal Alok

Abstract

Abstract This paper focuses on advancement of an autonomous robot manipulator for pick and place applications using Artificial Intelligence Technique. The mobile robot carries a four Degree of Freedom (DOF) robotic arm for picking a particular object from a given initial position to the required target position in an unknown static environment, while tackling obstacles and implementing path planning algorithm using artificial intelligence technique. The proposed artificial intelligence technique employs the optimization strategy, based on a novel meta-heuristic approach for mobile robot path planning. The mobile manipulator involves the use of infrared, ultrasonic sensors for detecting obstacles, microcontroller for artificial intelligence software and geared motors & servo motors for motion locomotion. The effectiveness of the method was tested and verified by via simulation mode on four different trajectories. From the simulation results, it was found that approximately path length and elapsed time of triangular shape, conical shape, cubical shape&S- shapeobstacles environments are 70.22, 70.92, 71.29 & 70.36 pixels and 117.93, 73.94, 122.86 & 117.87 seconds respectively.

Publisher

IOP Publishing

Subject

General Medicine

Reference15 articles.

1. Inverse kinematics of mobile manipulator using bidirectional particle swarm optimization by manipulator decoupling;Ram;Mech Mach Theory,2019

2. Design of Robotic Manipulators for Optimal Dynamic Performance;Shiller,1991

3. Pick and Place Planning for Dual-Arm Manipulators;Harada;IEEE IntConf Robot Autom,2012

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fabrication of a Revolutionary Pick-and-Place Robot with Omnidirectional Mobility;2024 International Conference on Image Processing and Robotics (ICIPRoB);2024-03-09

2. Artificial Intelligence in Manufacturing Equipment, Automation, and Robots;A Perspective on Artificial Intelligence in Manufacturing;2023

3. A Car-like Mobile Manipulator with an n-link Prismatic Arm;2021 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE);2021-12-08

4. Design and control of a two-link robotic manipulator: A review;SEVENTH INTERNATIONAL SYMPOSIUM ON NEGATIVE IONS, BEAMS AND SOURCES (NIBS 2020);2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3