Research on Intrusion Detection and Target Recognition System Based on Deep Learning

Author:

Hu Xianwei,Li Tie,Wu Zongzhi,Gao Xuan

Abstract

Abstract Intrusion target detection and recognition are of great significance to security protection of oil and gas fields. An intrusion detection system is built with the integration of infrared image acquisition module, infrared image processing module, moving target detection module and recognition module. Traditional target recognition algorithm highly relies on manual design feature extraction algorithm, which requires designer to have adequate prior knowledge, and cannot avoid the influence of subjective factors of people. Intrusion detection and target recognition system are proposed based on deep learning, which uses neural network algorithm. Deep learning model is built through feature extraction and training of acquired images of intrusion objects, and thus subsequent invasion objects are detected and recognized. Intrusion detection is achieved through simulation of human brain, which boasts of more intelligent recognition process and more accurate recognition results compared with traditional recognition method. According to applications in real scenario, the system proposed has better detection and recognition results and great practical value.

Publisher

IOP Publishing

Subject

General Medicine

Reference19 articles.

1. Visually enhanced CCTV digital surveillance utilizing Intranet and Internet;Ozaki;ISA Transactions,2002

2. Live sport monitoring using remote camera system;Apatcha;Procedia Social and Behavioral Sciences,2010

3. Low Resolution Person Detection with a Moving Thermal Infrared Camera by Hot Spot Classification;Teutsch,2014

4. Reducing the dimensionality of data with neural network;Hinton;Science,2006

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Efficient Multi-Task Network for Pedestrian Intrusion Detection;IEEE Transactions on Intelligent Vehicles;2023-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3