Self-Powered 6LoWPAN Sensor Node for Green IoT Edge Devices

Author:

Al-Kaseem Bilal R.,Ahmed Anas F.,Abdullah Aws M.,Azouz Tariq Z.,Al-Majidi Sadeq D.,Al-Raweshidy Hamed S.

Abstract

Abstract In this paper, a simulation model and practical testbed for green Internet of Things (IoT) edge devices are proposed based on solar harvester with constant voltage-maximum power point tracking (CV-MPPT) technique. Billions of connected edge devices represent the essential part of the IoT through the IP-enabled sensor networks based on IPv6 over Low power Wireless Personal Area Network (6LoWPAN). In traditional IoT edge devices, the stored energy in the non-rechargeable battery determines the node lifetime while it is being depleted with time. Therefore, purchasing billions of such batteries is costly and must be disposed of efficiently. This paper is aimed at simulating and implementing a new class of green IoT edge devices that can report data wirelessly and powered perpetually using clean energy. The developed edge device utilizes solar energy harvesting mechanism through photovoltaic (PV) module, this approach will avoid periodical battery replacement and hence, the energy supplied to the sensor mode is not limited anymore. The implemented testbed is based on open-source hardware and software platforms while the simulation environment is based on MATLAB/SIMULINK 2019a. The effects of temperature and solar irradiance on the performance of the developed approach are examined in order to confirm the leverage of the proposed methodology scheme. The lifetime of the developed green IoT device is predicted based on the device’s activities, current consumption, and energy storage capacity. The obtained results showed that the battery lifetime is extended by 38-49% when the edge device runs on an independent power source.

Publisher

IOP Publishing

Subject

General Medicine

Reference42 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Implementation and Evaluation of IPv6 with Compression and Fragmentation for Throughput Improvement of Internet of Things Networks over IEEE 802.15.4;Wireless Personal Communications;2023-03-16

2. Assessing the Climate Change-Related Health Hazards in Africa;Climate Change Management;2023

3. Intelligent Façade Skinning System Based on Crowd-Sensing and Air-Quality Monitoring;2022 Engineering and Technology for Sustainable Architectural and Interior Design Environments (ETSAIDE);2022-06-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3