Effect of gas pressure on conduit plasma atomization for fabricating spherical stainless steel powder

Author:

Dharmanto ,Supriadi Sugeng,Sunar Baskoro Ario,Suharno Bambang

Abstract

Abstract In this study, spherical stainless steel powders are produced using the conduit plasma atomization. Parameters of the conduit plasma atomization process with gas variations of 1.5 bar pressure, 2 bar pressure, 2.5 bar pressure with 316L stainless steel raw material with a current of 25 Amperes, feed speed of 2 mm3/s. The results of stainless steel powders were observed using a digital microscope (Dino-Lite AM4115), scanning electron microscopy (SEM-FEI-Inspect F50), and energy dispersive spectroscopy (EDS). To ensure the purity of the resulting 316L stainless steel spherical powder, EDS was used for qualitative and quantitative elemental analysis. The results showed that the 316L stainless steel spherical powder particles varied in size from 35 µm to 140 µm, making them ideal for powders metallurgy application. The effect of gas pressure on the powder weight percentages for particle sizes 50 µm – 100 µm for 1.5 bar pressure, 2.0 bar pressure, and 2.5 bar pressure were 67.14%, 78.71%, and 81.73%, respectively. It is possible that this could happen because to break down molten metal into smaller size droplets, it is needed the kinetic energy of larger gas pressure. So that large gas pressure can produce more small particle size compared to small gas pressure.

Publisher

IOP Publishing

Subject

General Medicine

Reference15 articles.

1. Designs and evaluations of a gas atomizer to fabricate stainless steel metal powder to be applied at a metal injection molding in;Supriadi,2020

2. Effect of pressure on the gas atomizer to fabricate stainless steel metal powder in;Supriadi,2020

3. A comparative study of Ti-6Al-4V powders for additive manufacturing by gas atomization, plasma rotating electrode process and plasma atomization;Chen;Powder technology,2018

4. ASM Handbook Volume 7: Powder Metallurgy;Samal,2015

5. Powder application in additive manufacturing of metallic parts;Džugan;powder metallurgy: fundamentals and case studies,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3