Prediction of Machining Characteristics of Wire Electrical Discharge Machined Hastelloy-X using Artificial Neural Network

Author:

Parmar Santosh,Narendranath S,Balaji V,Manoj IV,Jatakar Keshav H

Abstract

Abstract Due to extensive mechanical load bearing capability under high temperature and pressure, Nickel based super alloys are widely incorporated in aerospace and aviation industries in various sections like chemical, fuselage, engine, combustor components, etc. Hastelloy-X is a Ni-based super alloy consisting mainly Ni, Cr, Fe, Mo and Co, which has good corrosion and heat resistance capacity. Since Hastelloy-X is a difficult-to-machine material, a non-conventional Wire Electric Discharge Machining is used. This work aims at machining characteristics study of WEDM of Hastelloy-X and prediction of major machining performances using Artificial Neural Network (ANN). At first, full factorial design of experiments was set using Minitab which includes four input machining parameters namely pulse-on time (T-on), pulse-off time (T-off), wire feed (WF) and servo voltage (SV); kept at three levels; high, medium and low. Total 81 experimental runs were performed. After machining on WEDM, machining performances MRR (material removal rate) and SR (surface roughness) were measured. There after the neural network is trained in nntool in MATLAB to predict the MRR and SR. The predicted model has mean absolute percentage error (MAPE) of 6.371% for MRR prediction and 5.92% for SR prediction while the MSE (Mean Square Error) was found to be 0.389 and 0.129 for MRR and SR respectively. The trained network has training, validation and testing regression coefficient (R) values of 0.9756, 0.9916 and 0.9662 respectively. And the overall R value was 0.97746. After prediction, the samples with extreme values of actual and predicted outputs were studied for other machining responses like recast layer, surface cracks and kerf width. Out-turn of this research can be utilized for machining hard to machine materials in a high precision WEDM for different applications.

Publisher

IOP Publishing

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3