Author:
Raghavendra Kumar R,Gupta Rajiv
Abstract
Abstract
In recent times, water storage is becoming a confronting task because of the depletion of water resources worldwide. Domestic rainwater harvesting and human-made structures for water procurement achieved significance because of the increase in intermittent water accessibility. In turn, functional water infrastructures fetch prominence in the wake of constructive coordination among the communities in a locality. Low water security and losses through evaporation observed by practising different rainwater harvesting methods create a research gap to construct water infrastructure in rural areas to procure water productively. The current research work represents the model of a water storage structure, named directional tunnel (DT), which is placed below the ground level in a declination, as it reduces evaporation and temperature, thus storing rainwater for longer days. DT stores runoff and rainwater collected from the rooftop of multiple houses in a selected locality. The detailed working of the DT is discussed using Building Information Modelling (BIM) concept. Combined with the engineering geological characteristics, the DT’s stability during water storage comes into the picture as the whole structure interacts with the soil. The current study also focuses on the behaviour of DT with respect to sandy soil using PLAXIS 3D software, and the results are interpreted for practical viability.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献