Comparative Study of Seismic Acceleration Amplification Models for RC Frame Structures

Author:

Agrahari Ravinder Kumar,Pathak K.K.

Abstract

Abstract As the current aspect, the nonstructural components (NSCs) linked with the structures are more affected during the seismic motion. It causes not only loss of the economy but also affected life. The various codal provision has been available for minimizing the damages of primary components, but for NSCs, a minimal requirement is functional. So that more investigation is required for understating the behavior of NSCs during the seismic motion. The research aims to understand the behavior of acceleration demand on NSCs in a building. Structures subjected to inertia forces due to earthquakes experience damage of nonstructural components (NSC). The inertia force acting the NSCs are related to acceleration amplification factor. For obtaining the peak horizontal floor acceleration with respect to tectonic ground motion, these factors are used. In this paper, mathematical models of the acceleration amplification factor defined as the peak floor acceleration with respect to peak ground acceleration, given by previous researchers, has been compared. For this 2,4,6,8 and 10 storey moment-resisting frame models considering 29 ground motion data ranging between 0.1g to 0.2g, is analyzed using linear time history method. The supports of the models are considered fixed. The ETABS software is used for the analysis of the models. To analyses the models, the modal mass participation ratio plays a significant role. ASCE 7-05 defines that the structure should be investigated and designed when the model mass participation ratio is equal to or more than 90 per cent. Based on the results, a comparison of the reported models is made. There is a strong need for further research to refine the models for the realistic prediction of acceleration amplification factor.

Publisher

IOP Publishing

Subject

General Medicine

Reference19 articles.

1. Nonstructural Damage;Reitherman;Earthquake Spectra,1995

2. Performance of Non-Structural Components During the 27 February 2010 Chile Earthquake;Miranda;Earthquake Spectra,2012

3. Approximate Floor Acceleration Demands in Multi-storey Buildings;Miranda;Journal of Structural Engineering,2005

4. Seismic Design of Secondary Structures: State of the art, Journal of Structural Engineering;Villaverde;Journal of Structural Engineering,1997

5. Seismic Response of Light Subsystems on Inelastic Structures;Lin;Journal of Structural Engineering,1985

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3