Fractal characterization of conductive Ag/flexible 3D printed PLA

Author:

Mwema F.M.,Adediran A.A.,Akinlabi E.T.,Adeleke A.A.,Olayanju T.M.A.

Abstract

Abstract In this paper, thin and flexible PLA plates were prepared through FDM printing process. The traditional FDM process was adopted at predetermined optimal printing parameters of the 3D printer. The CAD designs of the samples were built on SpaceClaim modeler (ANSYS® 2019). The slicing and generation of the toolpath (gcodes) were undertaken in Cura software whereas the printing undertaken using a Desktop 3D printer (WANHAO Duplicator D10). The flexible PLA samples were designed for conductivity in smart devices; as such, they were coated with microfilms of highly conductive silver paint through a dipping method. The dipping was carefully undertaken in which the samples could soak inside the paint for 40 seconds and then removed and allowed to dry in vacuum desiccators for 12 hours. The samples were then heat treated at varying times (0, 10 and 20 minutes) in an oven at a constant temperature of 100°. The samples were then profiled using atomic force microscopy to obtain the microroughness characteristics of the Ag/PLA surfaces. The height features as well as spatial roughness characteristics were obtained through mono-fractal and multifractal approaches. The influence of heat treatment times at the reported temperature is shown to significantly shown to influence the spatial roughness characteristics of the 3D printed flexible samples.

Publisher

IOP Publishing

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3