Water Quality Classification Using an Artificial Neural Network (ANN)

Author:

Sulaiman Khadijah,Hakim Ismail Lokman,Adib Mohammad Razi Mohd,Shalahuddin Adnan Mohd,Ghazali Rozaida

Abstract

Abstract Malaysia is currently a rapidly developing country to achieve a 2020 vision. However the development that has been carried out contributed to a negative impact on the environment especially on water quality. Due to the deterioration of water quality, serious management efforts on water quality has been taken. Thus, the aim of this study is to investigate a technique that can automatically classify the water quality. The technique is based on the concept of Artificial Neural Network (ANN). Since the greater part of their methodologies depend on the idea of `pattern recognition’. Thus, it is convenient to inspect its ability in classify water quality. There are six environmental data were used in this study such as pH, total suspended solids (TSS), dissolved oxygen (DO), chemical oxygen demand (COD), biological oxygen demand (BOD), and ammonia. The data was obtained by in-site measurement and laboratory analysis. Then, the data was used as the feeder of input variables in the ANN database system. After training and testing the network of ANN, the result showed that 80.0% of accuracy classification with 0.468 of root mean square error (RMSE). This showed the encouraging results for classification.

Publisher

IOP Publishing

Subject

General Medicine

Reference12 articles.

1. Cholera outbreak linked with lack of safe water supply following a tropical cyclone in Pondicherry, India;Fredrick;Journal of Health, Population and Nutrition,2015

2. Water Quality Assessment in Terms of Water Quality Index;Tyagi;American Journal of Water Resources,2013

3. Application of Artificial Neural Network to Classification Surface Water Quality;Wechmongkhonkon;World Academy of Science, Engineering and Technology,2012

4. Artificial neural network Modelling of the water quality index for Kinta River (Malaysia) using water quality variables as predictors;Gazzaz;Marine Pollution Bulletin,2012

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3