Optimization of Metagenome Sequence Identification with Naive Bayes and Certainty Factor

Author:

Utami Dian Kartika,Herfina ,Mulyana Iyan

Abstract

Abstract Metagenome studies are an important step in taxonomic grouping. Taxonomic grouping can be done using the binning method. Binning is a process to determine the contigs of each group of phylogenetic species. In this study, Binning was carried out using the Supervise Learning approach. We use the Naïve Bayes Classifier method and Certainty Factor. The classification process is carried out on phylum taxon levels. many of the organisms used were 50 organisms and the length of the fragments used was 500 bp and many readings were 1000 readings. The accuracy results obtained by the Naive Bayes method are 62.5%. While the accuracy obtained in the Certainty Factor method is 54.45%. From the results of the two methods of testing, it can be concluded that Naive Bayes is the best method of classification compared to Certainty Factor.

Publisher

IOP Publishing

Subject

General Medicine

Reference9 articles.

1. A primer on metagenomics;Wooley;PLos Computational Biology,2010

2. Klasifikasi Metagenom dengan Metode Naïve Bayes Classifier;Utami,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3