Analytical study regarding topological optimisation of an internal combustion engine cylinder block

Author:

Gaidur M,Pascal I,Rakosi E,Ulian T,Talif S,Manolache Gh

Abstract

Abstract The continuous rush for development has led the world of automotive engineering to progress that seemed unimaginable just a few years ago. This research paper examined the impact of a topological optimisation of an internal combustion engine block. Starting with the initial conditions, a constraint and load case scenario was established, after which a FEA simulation was conducted to set the reference values. In the last part of the research paper, test results are head-to-head compared to determine and quantify the improvements. This study aims to reduce the volume of the optimised part and increase its overall rigidity. The topology optimisation process represents a good solution for “what if” scenarios. By varying optimisation constraints, the designers can quickly check if the mass reduction of the analysed part is worth the changes.

Publisher

IOP Publishing

Subject

General Medicine

Reference6 articles.

1. Analytical study regarding the topological optimisation of an internal combustion engine piston;Gaidur;Materials Science and Engineering,2020

2. Effect of elevated temperature of the fatigue strength of casted AlSi8Cu3 aluminium alloys;Garb;Procedia Structural Integrity,2017

3. Nonlinear topology optimisation of centrifugally loaded aero-engine part with newly developed optimality-criteria based algorithm;Kober;Aerospace Science and Technology,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3