Numerical investigation of a pressure wave supercharger

Author:

Costiuc I,Costiuc L

Abstract

Abstract The paper aims at a numerical investigation of the evolution of velocity, pressure and temperature field along the wave rotor channels for a pressure wave supercharger. Since in literature most of the studies are made considering the working fluid as incompressible and inviscid in a 2D field, the present study is using the compressible and viscous terms in unsteady Navier-Stokes equations for fluid in 3D field. The geometry was drawn in CAD software using measurements made on a real model of the CX-93 pressure wave supercharger. The simulation was conducted using a CFD code for unsteady 3D k-e, k-co model approach to reproduce data such as pressures, temperature and mass flows which are usually measured in real engine pressure wave supercharging. The computational domain for uRANS was modeled as a moving rotational domain with adaptive meshing. Results such as velocity, pressure and temperature field in the rotor channels were obtained for exhaust gas inlet pressure of 0.28 MPa and 1465 K temperature at different rotational speeds. The air inlet state considered was: 0,098 MPa and 293 K. Supercharging by means of a pressure wave supercharger, in order to improve the performance of an internal combustion engine, appears to be a promising solution since the exhaust gas generates a benefice boost of intake air with significant advantages when compared to the conventional turbocharging. The numerical modelling of the complex phenomena occurring within the narrow channels might be a useful tool for improving the pressure exchange between the working fluids, either by modifying the input parameters or by optimizing the geometry of the rotor, ports or pockets.

Publisher

IOP Publishing

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3