The relationship between data skewness and accuracy of Artificial Neural Network predictive model

Author:

Larasati A,Hajji A M,Dwiastuti Anik

Abstract

Abstract The purpose of this study is to investigate the relationship between data skewness in the output variable and the accuracy of artificial neural network predictive model. The artificial neural network predictive model is built using multilayer perceptron and consist of one output variable and six input variable, and the algorithm used is back propagation. Data used in this study is generated by conducting the simulations in 1000 cycles. Three categories of skewness used in the output variables are positive skewness, neutral, and negative skewness. The results show that data skewness does not have a significant effect on the accuracy of the artificial neural network predictive model. These results imply that artificial neural network predictive model has a higher capability to cope with skewed data due to its complexity in the hidden layer.

Publisher

IOP Publishing

Subject

General Medicine

Reference7 articles.

1. On conditional skewness with applications to environmental data

2. Boosting Prediction Accuracy on Imbalanced Datasets with SVM Ensembles;Liu,2006

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3