Author:
Larasati A,Hajji A M,Dwiastuti Anik
Abstract
Abstract
The purpose of this study is to investigate the relationship between data skewness in the output variable and the accuracy of artificial neural network predictive model. The artificial neural network predictive model is built using multilayer perceptron and consist of one output variable and six input variable, and the algorithm used is back propagation. Data used in this study is generated by conducting the simulations in 1000 cycles. Three categories of skewness used in the output variables are positive skewness, neutral, and negative skewness. The results show that data skewness does not have a significant effect on the accuracy of the artificial neural network predictive model. These results imply that artificial neural network predictive model has a higher capability to cope with skewed data due to its complexity in the hidden layer.
Reference7 articles.
1. On conditional skewness with applications to environmental data
2. Boosting Prediction Accuracy on Imbalanced Datasets with SVM Ensembles;Liu,2006
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献