Local flow assessment of the Japan Bulk Carrier using different turbulence models

Author:

Bekhit A,Popescu F

Abstract

Abstract Ship resistance and powering represent the most important aspects in the initial design stage of the ship. Based on their estimation the basic milestone for selecting the main engine and the propulsion system is established. The majority of ships in the international fleet nowadays rely on the screw propeller working in the wake zone behind the ship. The wake flow of the ship has a direct impact on the propeller performance and the propulsion efficiency. Accurate prediction of the nominal and effective wake is crucially important to provide a proper understanding of the flow where the propeller will perform. From this point of view, the wake flow of the Capesize Japan Bulk Carrier (JBC) is assessed using a viscous flow Computational Fluid Dynamics (CFD) method. Numerical simulations are performed to predict the nominal and effective wake of the ship by making use of the viscous flow solver ISIS_CFD of the FINETM/Marine software provided by NUMECA. The solver is based on the finite volume method to build the spatial discretization of the transport equation to resolve the Reynolds-Averaged Navier-Stokes (RANS) equations. Closure to turbulence is achieved using different turbulence models in order to investigate their accuracy in predicting the complex wake flow of the ship. Two-phase flow approach is used to model the air-water interface where the Volume of Fluid method is implemented to capture the free-surface. The results for both nominal and effective wake are assessed against the experimental data provided by the National Maritime Research Institute (NMRI) and Yokohama National University in Japan that were presented in the seventh Workshop on CFD in ship hydrodynamics (Tokyo2015). The results validation showed a reasonable agreement compared to the experimental data for both nominal and effective wake. As it was expected, some turbulence models showed to be more accurate in predicting ship wake, especially the Shear Stress Transport (K-ω SST) and Explicit Algebraic Reynolds Stress (EASM) Models. A special investigation of the flow vortices is also taken into consideration.

Publisher

IOP Publishing

Subject

General Medicine

Reference14 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3