Joint Sparsity and Total Variation Based Unmixing of Mixed Noise

Author:

Bachu Srinivas,Mounika Moturi,Nagabhushanam K

Abstract

Abstract Hyperspectral unmixing is the procedure by which the end component elements are calculated and their fractional abundances are found in each pixel in hyperspectral images. Sometimes several types of sound harm a hyperspectral photo. In a general scenario that takes mixed noise into consideration, this study addresses the hyperspectral non-mixing problem. Gaussian and sparse noises are expressly taken into account in the unmixing model. The problem of unmixing was formulated to use the combined shortage of abundance maps. For the modelling of flatness diagrams, a complete variation-based regularisation has also been used. For the solution of an algorithm for the optimization problem, the split-Bregman technique was used. The advantages of the method proposed are revealed by detailed preliminary findings on both real and synthetic images.

Publisher

IOP Publishing

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3