Usage of Particle Swarm Optimization to Improve the Performance of Supervised Classifiers

Author:

Bharanidharan N,Nivetha M,Balakrishna A,Dhanaraju P

Abstract

Abstract Representing the data appropriately will have a significant effect on the outcome produced by the classifier. Transforming the feature will help to represent the data points in a more suitable way for the classifier. Particle swarm optimization belongs to the Swarm Optimization techniques category and it is generally used for solving numerical optimization problems, weight updation in neural networks, and feature selection. This research work proposes a Particle swarm optimization-based transformation technique for increasing the classification metrics of popular classification algorithms namely K-Nearest Neighbor, Stochastic Gradient Descent Classifier, Decision trees, and linear discriminant analysis classifier. Experiments are conducted using the SONAR dataset and the highest accuracy of 82.69% is attained for Stochastic Gradient Descent classifier when Particle swarm optimization is used as a transformation technique

Publisher

IOP Publishing

Subject

General Medicine

Reference11 articles.

1. Feature space transformation using genetic algorithms;Vafaie;IEEE Intelligent Systems,1998

2. Feature construction and dimension reduction using genetic programming;Neshatian;Springer Leture Notes in Computer Science,2007

3. A New Heuristic Optimization Algorithm;Geem;Harmony Search Simulation,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3