Design of a novel experimental profile for the development of a numerical model for extrusion processing of a magnesium alloy

Author:

Plumeri J E,Misiolek W Z

Abstract

Magnesium alloys are an important structural material to many global industries. Their high specific physical properties are useful in the design of lightweight engineering systems. In this study, the development of a numerical model for the prediction of high-temperature extrusion of an Mg-Zn-Ce alloy (ZE20) is presented. A novel design of an I-shaped profile for extrusion processing was created as part of this effort. This design was used to produce extrudates with large strain gradients across a single profile. In parallel, new numerical tools were developed to predict the extrusion behaviour of the ZE20 alloy. Finite element simulation of the indirect extrusion laboratory trials was used to calibrate the numerical model. Microstructural measurements of experimental samples through EBSD analysis were compared with simulation calculations, and insights into the relationship between extrusion temperature, strain, and resulting microstructure were gained. A fully recrystallised, bimodally distributed grain microstructure was observed throughout the samples. Proportions of grain refinement within the bimodal distribution were shown to correspond with localised strain gradients for a profile with nearly uniform temperature. Ultimately, extrusion press load calculations using the numerical model were shown to be within 5% of experimental trial values.

Publisher

IOP Publishing

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3