Investigation on thickness size effect on ductility of magnetron sputtered Niobium coatings on SS316L substrate for forming of precoated metallic bipolar plates

Author:

Li C Z,Xu Z T,Peng L F,Lai X M

Abstract

Metallic bipolar plates (BPPs) are key components of the proton exchange membrane fuel cell (PEMFC). To lower the fabrication cost of metallic BPPs, precoated BPPs have attracted much attention due to the high efficiency of precoating-stamping process. However, precoatings on metallic substrate tend to crack during the forming process, leading to deterioration or even complete loss of corrosion resistance. Therefore, to avoid micro cracks of formed precoated BPPs, development of coatings with high ductility is necessary. In this study, Niobium coatings with different thicknesses on SS316L substrate are prepared with magnetron sputtering process, and uniaxial tensile tests are then conducted for the precoated specimens to evaluate their ductility. The microstructure and fracture behaviour of the Niobium precoatings are characterized by XRD, SEM, TEM, laser confocal microscope analysis. It is found that with the increase of coating thickness, the number of micro cracks at the same strain decreases significantly, and the strain for the first crack to appear also increases. Furthermore, a brittle-to-ductile transition of fracture mechanism is observed. The grain size of Niobium nanocrystalline coating increases with the thickness, which leads to the improvement of plasticity and failure strain. Therefore, the application of precoated metallic BPPs is further advanced.

Publisher

IOP Publishing

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3