Numerical simulation of extrusion of FeMnSiCrNi/NiTiNb dissimilar shape memory alloy composite tube based on finite element method and cellular automaton

Author:

Jiang S Y,Sun D

Abstract

FeMnSiCrNi/NiTiNb dissimilar shape memory alloy composite tube is firstly put forward and it can be fabricated by means of isothermal extrusion. Based on Arrhenius constitutive model of FeMnSiCrNi and NiTiNb shape memory alloys, isothermal extrusion of FeMnSiCrNi/NiTiNb dissimilar shape memory alloy composite tube is simulated by rigid viscoplastic finite element method. It can be found that the deformation zone of the dissimilar shape memory alloy composite tube is always in a three-dimensional compressive stress state during extrusion, and the deformation of the inner tube is obviously higher than that of the outer tube. It is necessary to guarantee the interface compatibility between the inner tube and the outer tube during isothermal extrusion of FeMnSiCrNi/NiTiNb dissimilar shape memory alloy composite tube. The relationship between macroscopic process variables and microscopic variables during plastic deformation of FeMnSiCrNi shape memory alloy tube at high temperature is established by coupling finite element simulation and cellular automaton simulation. The microstructural evolution of FeMnSiCrNi shape memory alloy in different deformation zones during isothermal extrusion of dissimilar shape memory alloy composite tube is simulated. It can be concluded that the grain size of dynamic recrystallization is reduced with the increase of plastic strain in the deformation zone.

Publisher

IOP Publishing

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3