Application of improved gradient projection method to parametric optimization of steel lattice portal frame

Author:

Yurchenko V V,Peleshko I D,Biliaiev Nikita

Abstract

Abstract The paper has proposed a mathematical model for parametric optimization problem of the steel lattice portal frame. The design variable vector includes geometrical parameters of the structure (node coordinates), as well as cross-sectional dimensions of the structural members. The system of constraints covers load-carrying capacities constraints formulated for all design sections of structural members of the steel structure subjected to all ultimate load case combinations. The displacements constraints formulated for the specified nodes of the steel structure subjected to all serviceability load case combinations have been also included into the system of constraints. Additional requirements in the form of constraints on lower and upper values of the design variables, constraints on permissible minimal thicknesses, constraints on permissible maximum diameter-to-thickness ratio for the structural members with circle hollow sections, as well as the conditions for designing gusset-less welded joints between structural members with circle hollow sections have been also considered in the scope of the mathematical model. The method of the objective function gradient projection onto the active constraints surface with simultaneous correction of the constraints violations has been used to solve the formulated parametric optimization problem. New optimal layouts of the steel lattice portal frame by the criterion of the minimum weight, as well as minimum costs on manufacturing and erection have been presented.

Publisher

IOP Publishing

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3