Vehicle vibration safety estimation area

Author:

Zheglov L,Fominykh A

Abstract

Abstract It is known that the problem of mathematical modeling of the car vibration isolation system can be solved in the frequency and time domain. As the primary vehicle vibration isolation system has non-linear elements, the question arises: how does the linearized dynamic system solution in the frequency domain corresponding to the calculations of the accepted parameters in the time domain? The problem is solved at random kinematic perturbation from the road surface. Therefore, when working in the time domain to estimate the adequacy of solutions, it is necessary to make a choice of the method of statistical linearization from the known in practice design of automatic control systems. Four methods of statistical linearization are considered, using which calculations in the frequency domain have been carried out. For the chosen dynamic system with initial and statistically linearized nonlinear elements similar actions in the time domain were carried out. It is shown that the first method of statistical linearization is the most flexible, according to the amplitude-frequency response of the system. Such calculations were carried out for two surfaces corresponding to the cobblestone and subsoil roads at different speeds of the vehicle movement. The results of the research are separate-frequency and integral parameters. The last ones do not give any priority in the choice of the calculation field, under the condition of vehicle movement safety, i.e. there is no tire contact loss with the supporting surface.

Publisher

IOP Publishing

Subject

General Medicine

Reference25 articles.

1. Its own spectrum band - A property of mechanical systems;Ovchinnikov;IOP Conference Series: Materials Science and Engineering,2018

2. Efficient Nonstationary Stochastic Response Analysis for Linear and Nonlinear Structures by FFT;Zhao;Journal of Engineering Mechanics,2019

3. Statistical linearization of nonlinear stiffness in hydropneumatic suspension;Cheng;MATEC Web of Conferences,2018

4. Random vibration of linear and nonlinear structural system;Kougioumtzoglou;Journal of Soundand Vibration,2017

5. Application of the method of statistical linearization in problems of identification of nonlinear systems;Pashchenko;Proceedings of the 2012 7th IEEE Conference on Industrial Electronics and Applications, ICIEA,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3