Modeling of Prediction Bandwidth Density with Backpropagation Neural Network (BPNN) Methods

Author:

Hayat Cynthia,Aang Soenandi Iwan,Limong Samuel,Kurnia Johan

Abstract

Abstract Using computer networks in campus area which is open access will cause some problems at the speed to access the information. The allocation of bandwidth that provided sometimes does not match the needs of the client, so it takes an accurate prediction of bandwidth usage. This research obtained that Neural Network backpropagation modeling can solve the problem. The stages of research conducted the stage of training and testing phase. Data training is traffic data weekly and conducted by feed-forward back method, with max error 0.001, max hidden layer neuron 5000, constant momentum 0.95 and increase ratio 0.1. Before the data train is conducted, the scaling of the input and target values in the range of 0.1-0.9, then resumes the denormalization after the data train to return the data into Kb form. The results obtained from the training process in the form of comparison data, training performance, and regression. Furthermore, data testing, conducted by using a network that has been developed from the previous results. The test results are shown in the form of real data and predictive data using 8 input layers. In the prediction process, the mean square error generated is 0.0031792 which indicates a low error rate, so it can be stated that the resulting modeling has a level of output accuracy in predicting the use of computer network bandwidth is very high.

Publisher

IOP Publishing

Subject

General Medicine

Reference10 articles.

1. Unified architecture for network measurement: The case of available bandwidth;Aceto;J. Netw. Comput. Appl.,2012

2. An empirical study of the multiscale predictability of network traffic;Qiao,2004

3. A flexible reservation algorithm for advance network provisioning;Balman,2010

4. Forecasting of nonlinear time series using ANN;Tealab;Futur. Comput. Informatics J.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3