Cardiac Arrhythmia classification using deep learning

Author:

Silalahi Alexander R. J.,Pandiangan Tumpal

Abstract

Abstract The present work aims to obtain an automated program based on deep learning to detect and classify cardiac arrhythmia using electrocardiogram (ECG) data. One of the main obstacles in working with medical dataset is the limited availability of public medical data and the fact that only a small fraction of data represents non-normal medical conditions. In the present work we will compare the two convolutional neural network models inspired by VGGNet and ResNet in predicting of cardiac arrhythmia. Our calculations show that the two methods are equally good in predicting the overall accuracy for large dataset. However, ResNet shows a slightly better performance in predictions for much smaller dataset.

Publisher

IOP Publishing

Subject

General Medicine

Reference10 articles.

1. Heart Disease and Stroke Statistics—2016 Update;Mozaffarian;Circulation,2016

2. The burden of cardiovascular disease attributable to major modifiable risk factors in Indonesia;Hussain;J. Epidemiol.,2016

3. Accuracy of ECG interpretation in competitive athletes: the impact of using standardised ECG criteria;Drezner;Br. J. Sports Med.,2012

4. Electrocardiograms in athletes: Interpretation and diagnostic accuracy;Lawless;Med. Sci. Sports Exerc.,2008

5. Effects of age, sex, and race on ECG interval measurements;Macfarlane;J. Electrocardiol.,1994

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3