Synthesis and characterization of MSU-2 synthesized by using tetraethylorthosilicate and Triton X-100

Author:

Lee X Y,Chew T L,Oh P C,Jawad Z A,Ho C D

Abstract

Abstract Adsorption technology is one of the well-established gas separation techniques as it can minimize cost and energy requirement for CO2 separation. Mesoporous silicas such as MSU-2 appears to be a good adsorbent as it comprises of three-dimensional (3D) wormhole framework structures that are highly interconnected which minimize the diffusion resistance of CO2 through its pore structure. Current study focus on the preparation of MSU-2 and investigation on the CO2 adsorption on the synthesized MSU-2. In this study, MSU-2 was prepared by using tetraethylorthosilica (TEOS) as a source of silica in the presence of non- ionic polyethyleneoxide (PEO)-based surfactants under an acidic condition where the pH is 2 at 55 °C for 48 hours via the fluoride-assisted two-step synthesis process. The two main steps involved are hydrolysis of TEOS and condensation of silica. The morphology, crystallinity, functional groups and pore characteristics of MSU-2 were investigated by using characterization method of Field Emission Scanning Electron Microscope (FESEM), Energy Dispersive X-Ray (EDX) Spectrometry, X-ray Diffractometer (XRD), Fourier Transform Infrared Spectroscopy (FTIR) and Brunauer-Emmett-Teller (BET). The synthesized MSU-2 was well crystallized and possessed a uniform monodisperse microspherical morphology with BET surface area, pore volume and pore size of 964 m2/g, 0.98 cm3/g and 4.1 nm, respectively. All the characterization results showed that MSU-2 was successfully synthesized via solution precipitation method. In conclusion, the high BET surface area of the synthesized MSU-2 shows that MSU-2 is a very potential candidate as a good adsorbent for gases.

Publisher

IOP Publishing

Subject

General Medicine

Reference32 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3