Clustering with Principal Component Analysis and Fuzzy Subtractive Clustering Using Membership Function Exponential and Hamming Distance

Author:

Haryati Annisa Eka,Sugiyarto

Abstract

Abstract The problem of dimension reduction in multivariate data is how to obtain a smaller number of variables but still be able to maintain most of the information contained in the data. One method that can be used is principal component analysis (PCA). Principal component analysis (PCA) is a technique used to reduce the dimensions of data consisting of several dependent variables while maintaining the variance in the data. PCA can be used to stabilize measurements in statistical analysis, one of which is cluster analysis. Fuzzy clustering is a method of grouping based on membership values that include fuzzy sets as a basis for weighting for grouping. One method of fuzzy clustering is Fuzzy Subtractive Clustering (FSC). The method used in this study is PCA and FSC. The purpose of this study is to compare the most optimal cluster results using PCAFSC and FSC methods. The results obtained indicate that the clustering using the PCAFSC method is better than the FSC method.

Publisher

IOP Publishing

Subject

General Medicine

Reference21 articles.

1. Media interaktif pengenalan angka dengan jari tangan menggunakan metode PCA;Dafitri;J. of Information System,2019

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Acoustic Doppler Current Profiler Data Analytics Using a Hybrid of Machine Learning Methods;2023 2nd International Engineering Conference on Electrical, Energy, and Artificial Intelligence (EICEEAI);2023-12-27

2. Optimization Takagi Sugeno Kang fuzzy system using mini-batch gradient descent with uniform regularization;PROCEEDINGS OF THE 3RD AHMAD DAHLAN INTERNATIONAL CONFERENCE ON MATHEMATICS AND MATHEMATICS EDUCATION 2021;2023

3. Efficient Recognition for MQAM Signal Using Feature Extraction;2021 International Conference on UK-China Emerging Technologies (UCET);2021-11-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3