Preliminary study of abrasive water jet texturing on low thickness UNS A92024 alloy sheets

Author:

Bañon F,Sambruno A,Gómez A,Mayuet P F

Abstract

Abstract Texturing and surface modification operations are a line of research of great interest nowadays. The requirement to establish a process that can generate a constant and homogeneous roughness as a previous step to joining operations, application of paint or mechanical tests is a current challenge. Technologies such as shot blasting or laser texturing have achieved great results in terms of roughness and surface activation. Nevertheless, there is an alternative technology that is achieving great interest. Abrasive water jet texturing takes advantage of the combination of the impact of abrasive particles and water at high speed with the controlled displacement of the jet to generate a surface with a controlled roughness. Thus, in comparison with other technologies, abrasive waterjet texturing can achieve higher roughness values and a constant texturing area as a function of the overlap established between the passes. In this work, a preliminary study is proposed in order to establish a direct relationship between the parameters governing the technology and the roughness generated in a low thickness UNS A92024 alloy. Defectology associated to the process, as well as the combination of texturing parameters have been determined.

Publisher

IOP Publishing

Subject

General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3