Author:
Hillenbrand J,Detroy J,Fleischer J
Abstract
Abstract
In the age of Industry 4.0 and IIoT machines are becoming increasingly connected enabling continuous monitoring. A variety of information from machines and installed sensors is used to develop condition monitoring solutions. These systems are used to prevent premature failures and the follow-up costs due to machine downtime associated with them. Recent research in this area applies supervised machine learning, extracting features from captured signals and training classifiers. Supervised learning approaches require large amounts of labeled data, whose generation is time consuming and requires domain knowledge. For this reason, an unsupervised learning approach is being used in this work to distinguish between different defect and operation states of axial ball bearings. Within the scope of this work, acoustic emission (AE) measurements in the ultrasonic range are recorded and evaluated. Artificial defects are seeded in the rolling contact of axial bearings. From the AE signals a selection of state-of-the-art features is extracted. Then, the Laplacian Score, an unsupervised filter algorithm, is used to select the most significant features. Subsequently, the DBSCAN clustering algorithm is used to draw conclusions about the existing damage.
Reference20 articles.
1. Feature learning for fault detection in high dimensional condition monitoring signals;Michau;Journal of Risk and Reliability,2020
2. Semi-supervised Learning with Deep Generative Models for Asset Failure Prediction;Yoon;KDD Workshop on Machine Learning for Prognostics and Health Management,2017
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献