Advances in efficiency in the groove milling of aluminium EN AW 2024-T3 with zig-zag and trochoidal strategies

Author:

Rodríguez O,Romero P E,Molero E,Guerrero G

Abstract

Abstract Manufacturing process engineers must continually take decisions to make the processes efficient. Manufacturing time, surface finish and energy consumption are aspects to be optimized in machining. This study analyzes the efficiency of groove milling in milling aluminum alloys EN AW 2024-T3 with zig-zag and trochoidal strategies. Dynamic milling is designed to maximize the removal rate and optimize the tool performance. This generates a discontinuous cutting with minimum of heat reducing build-up with an optimal chip removal minimizing cutting edge wear. The influence of lateral pitch, feed per tooth, cutting speed and coolant pressure has been analyzed. The depth of curt has been adapted for each strategy and tool type. The study was proposed through a factorial design of experiments by the Taguchi method. The machining time (T) and energy consumption (EC) show a strong influence of the lateral step (a e ) in conventional milling. A similar level of influence appears with the feed per tooth (f z ) on the trochoidal. The roughness (Ra) is more influenced by cutting speed (V c ) for conventional milling and by feed per tooth (f z ) and lateral pitch (a e ) for the trochoidal.

Publisher

IOP Publishing

Subject

General Medicine

Reference19 articles.

1. New aspect of development of high strength aluminum alloys for aerospace applications;Nakai;Materials Science and Engineering,2000

2. Influence of pre-machining on post-machining deformation of thin-walled elements made of aluminium alloy en AW-2024;Zawada-Michałowska;IOP Conference Series: Materials Science and Engineering,2018

3. Evaluation of Cutting Forces and Prediction of Chatter Vibrations in Milling;Lacerda;Journal of the Brazilian Society of Mechanical Sciences and Engineering,2004

4. Performance and limits of high-dynamic milling processes based on trochoidal tool paths;Hesterberg;Academic Journal of Manufacturing Engineering,2017

5. Trochoidal milling: investigation of dynamic stability and time domain simulation in an alternative path planning strategy;Akhavan Niaki;International Journal of Advanced Manufacturing Technology,2019

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3