Acoustic study of multi-layered microperforated elements for fibreless noise control applications

Author:

Villau M.,Rämmal H.,Lavrentjev J.

Abstract

Abstract Recently fibreless solutions have become a trend in the design of sustainable and environmentally friendly duct silencers. Hereby microperforated panels have been proven to provide adequate performance for the substitution of unfavourable fibrous material layers commonly used in mass-produced silencers. This paper presents an acoustic study of microperforated elements aimed for an effective and eco-friendly heating, ventilation, and air conditioning (HVAC) duct silencer. Several microperforated sheet metal panels have been experimentally tested in a variety of layered configurations in order to maximize the sound absorption coefficient in operational frequency range. The optimal solution is implemented in the design concept of a novel fibreless HVAC silencer presented in this research. The results of the study demonstrate the appropriateness of the double-layered microperforates for a duct silencer as well as for a variety of Noise, vibration and harshness (NVH) implementations were potent noise absorption is aimed.

Publisher

IOP Publishing

Subject

General Medicine

Reference14 articles.

1. Theory and design of micro perforated-Panel sound absorbing Construction;Maa;Sci. Sin.,1975

2. Micro perforated panel wide band absorbers;Maa;Noise Control Engineering Journal,1987

3. Potential of microperforated panel absorber;Maa;Journal of Acoustic Society of America,1998

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3