A novel double chamber rotary sleeve air compressor -part II: friction losses model

Author:

Alduqri Y A,Kamar H M,Musa M N,Kamsah N B,Idris N R N,Alqaifi Gamal

Abstract

Abstract This paper presents the friction loss model of a novel double chamber rotary sleeve air compressor (DCRSC) concept. The compressor mechanism is similar to that of rotary compressor whereby the novelty transpires in the instalment of two rotating sleeves and a secured vane that has one end fixed to an outer sleeve and the other end to a rotor, respectively. This Part II of the paper series presents the friction losses analysis of the compressor. Thermodynamic and leakage losses models were respectively presented in Part I and Part III of this paper series. The primary aim of this paper is to formulate and analyse the friction loss model at the radial and axial contact regions of DCRSC at different rotational speed. The variations of the mechanical power and efficiency were evaluated based on the adiabatic, polytropic and isothermal thermodynamic principles as illustrated in Part I of this paper series. Considering the design simplicity of cylindrical shaped components, at maximum rotational speed of 1500 rpm, the DCRSC mechanical efficiencies are 72.43%, 66.2% and 59% when air undergoes adiabatic, polytropic and isothermal compression process, respectively. it is believed that the DCRSC is well suited for compressed air systems and air-conditioning applications.

Publisher

IOP Publishing

Subject

General Medicine

Reference27 articles.

1. Ideal Specific Work of Rotary Compressors: A New Approach;Abagnale;Energy Procedia,2016

2. Development of a high-performance scroll compressor for automotive air conditioners;Akazawa,1996

3. Theoretical study on frictional losses of a novel automotive swing vane compressor;Hu;International Journal of Refrigeration,2013

4. Developing a compact automotive scroll compressor;Yi,2008

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3