Impact of Heavy Hydrocarbon Concentration on Natural Gas Flow through Transportation Pipelines

Author:

Abd A A,Naji S Z,Alwan H H,Othman M R,Tye C T

Abstract

Abstract In this work, binary, ternary, quaternion, and quinary natural gas mixtures were evaluated including methane, ethane, propane, butane, and pentane to highlight their impact on pipeline performance and thermophysical properties of natural gas. The results presented that all the heavy hydrocarbons have a negative impact on natural gas phase envelope. For binary mixtures, methane/propane recorded the widest two-phase envelopes while the quinary mixtures generally formed the widest two-phase envelopes over the other mixtures. Besides, the heavy hydrocarbons content of different mixtures increased the critical pressures and critical temperatures in comparison to pure methane. The highest temperature drop of 6.495 °C was recorded by the binary mixture and the lowest temperature drop of 6.341 °C was by quinary mixture. The highest pressure drop of 4.964 bars was caused by the quinary mixture, while the lowest pressure drop of 4.1 bars was by the binary mixture. In addition, the results showed that natural gas density controlled by methane content caused increasing the methane content resulting in reducing the density of natural gas mixture. The viscosity of natural gas is a sensitive parameter to the content of the heavy hydrocarbon concentrations and all heavy hydrocarbons increased the viscosity of natural gas in comparison to pure methane.

Publisher

IOP Publishing

Subject

General Medicine

Reference34 articles.

1. Historical Overview of the Natural Gas Industry;Castaneda,2018

2. Evaluation Of Hydrogen Concentration Effect On The Natural Gas Properties And Flow Performance;Abd;International Journal of Hydrogen Energy,2020

3. The Future of Natural Gas Infrastructure Development in the United States;Feijoo;Applied Energy,2018

4. Modelling Cost-Effective Pathways for Natural Gas Infrastructure: A Southern Brazil Case Study;García;Applied Energy,2019

5. Proposal And Design Of A Natural Gas Liquefaction Process Recovering the Energy Obtained From the Pressure Reducing Stations of High-Pressure Pipelines;Tan;Cryogenics,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3