Orange Fruit Images Classification using Convolutional Neural Networks

Author:

Asriny Dhiya Mahdi,Rani Septia,Hidayatullah Ahmad Fathan

Abstract

Abstract The quality of fruit is important to increase sales in the market. Right now, the quality selection of orange fruit is mostly still complete by humans. Several drawbacks such as inaccuracy and inconsistency in results happened due to the limitation of human perceptions. The development of computer vision, making it possible to train the computer to classify images based on specified characteristics. This paper proposes the classification model to classify orange images using Convolutional Neural Network (CNN). Five classes of orange namely good-orange-grade-1, good-orange-grade-2, immature-orange, rotten-orange, and damaged-orange are classified using deep learning CNN. Total of 1000 orange images is collected using the smartphone camera. Each class consists of 200 images which are divided into 60% as the training data, 20% as the validation data, and 20% as the testing data. K-Fold Cross-Validation method is used to validate the model. In this paper, the hidden layer of CNN consists of 256 nodes. Two activation functions, ReLU and Tanh, are employed for comparing the accuracy of classification with the Softmax classifier. The result shows that the accuracy of ReLU activation function is 96%, which is better than the Tanh activation function that gives only 93,8%.

Publisher

IOP Publishing

Subject

General Medicine

Reference16 articles.

1. Statistik tanaman buah-buahan dan sayuran tahunan Indonesia,2017

2. Analisis usaha tani jeruk dan faktor-faktor yang mempengaruhi penerimaan petani;Nainggolan;J. Agriculture and Agribusiness Socioeconomics,2013

3. Deep learning;LeCun;Nature Int. J. of Science,2015

4. Klasifikasi mutu jeruk nipis dengan metode learning vector quantization (LVQ);Romadhon;Jurnal Ilmiah Rekayasa,2015

5. Klasifikasi buah jeruk menggunakan metode naive bayes berdasarkan analisis tekstur dan normalisasi warna;Agustian;Program Studi Ilmu Komputer FMIPA - Univ. Pakuan,2015

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Detection of Tipburn Stress on Lettuce Grown in a Plant Factory using Artificial Intelligence (AI) Models;Horticultural Science and Technology;2024-07-30

2. The grading detection model for fingered citron slices (citrus medica ‘fingered’) based on YOLOv8-FCS;Frontiers in Plant Science;2024-06-05

3. Classification of Arabica Coffee Beans Based on Multi-Features Using Artificial Neural Networks;2023 1st International Conference on Advanced Engineering and Technologies (ICONNIC);2023-10-14

4. Recognition of Fruit Types from Striking and Flicking Sounds;Pertanika Journal of Science and Technology;2023-09-08

5. Identify the Freshness of the Fruit by Using CNN and SVM;2023 4th International Conference on Artificial Intelligence and Data Sciences (AiDAS);2023-09-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3