Data Prediction For Coffee Harvest Using Least Square Method

Author:

Negara Edi Surya,Keni Keni,Andryani Ria

Abstract

Abstract Pagaralam is one of the highest quality coffee producing regions in Indonesia. But the problem that is often found by farmers is the lack of knowledge and predictions about the coffee harvest they will produce in the next period. The solution that can be given is developing an application to be able to analyze and predict coffee yield data for the next harvest period. This study produces a calculation using the Least Square method which can produce a prediction algorithm for coffee yields with the lowest prediction error rate with an MPE of 13.72 and the greatest accuracy using a MAPE of 0.0166 which is implemented in a Coffee Harvest Prediction Application.

Publisher

IOP Publishing

Subject

General Medicine

Reference14 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Prediction of Optimal Crop to Grow Based on Geographical Information;Proceedings of International Conference on Data Analytics and Insights, ICDAI 2023;2023

2. Social network analysis to detect influential actors with Indonesian hastags using the centrality method;SIXTH INTERNATIONAL CONFERENCE OF MATHEMATICAL SCIENCES (ICMS 2022);2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3