Study of elasto-plastic deformation in a cast AlCu7 alloy

Author:

Schöbel M,Fernández R,Degischer HP

Abstract

Abstract The need for efficient and clean solutions, due to the increasing current environmental regulations puts extra pressure on new combustion engine development, to compete in a market with alternative driving concepts. Downsizing and weight reduction can reduce the engine emission and efficiency, but require light alloys with superior thermo-mechanical properties for high temperature exposure to maintain the same engine performance. Cast Al-Cu could be alternative to standard Al-Si alloys for new engine generations due to their higher temperature strength, creep-resistance and long term stability of engine components. In Al-Si and Al-Cu cast alloys with heterogeneous microstructures a composite-like deformation behavior is responsible for superior high temperature properties. Stiff Si or Al2Cu particles, respectively reinforce a ductile α-Al matrix to a composite with improved thermo-mechanical strength. However, different Young’s moduli and coefficients of thermal expansion are responsible for micro stress gradients and unpredictable micro crack formation under operation. These micro-mechanical deformation mechanisms in Al-Si and Al-Cu systems, responsible for crack initiation and growth, have been scarcely investigated so far. This manuscript describes an example of elasto-plastic deformation mechanisms in an AlCu7 alloy. Tensile testing shows anomalous macroscopic deformation behavior indicating unknown internal micro-mechanical processes. External loading until yield strength and beyond are applied under laboratory conditions and during in-situ neutron diffraction. The results of macroscopic deformation and micro strain evolution are compared and correlated with the heterogeneous micro structure. High resolution synchrotron computed tomography reveals conclusions on the micro-mechanic deformation mechanisms and their effects on the macroscopic damage initiation and material’s service performance.

Publisher

IOP Publishing

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3