A Fault Diagnosis Algorithm for Wind Turbine Blades Based on BP Neural Network

Author:

Bi Jun-Xi,Fan Wen-Ze,Wang Ying,Ren Jun,Li Hai-Bin

Abstract

Abstract As one of the most critical wind power generation components, wind turbine blades play a key role in generating wind power. Aiming at the problem that the wind turbine blades are subjected to multiple loads in combination, the crack problem is easy to occur. Through the analysis of the macroscopic expansion mechanism and microscopic damage mechanism of short cracks and main cracks, the hidden relationship between crack appearance and damage nature is deeply explored. A fault diagnosis algorithm for wind turbine blades established on the basis of the BP neural network is raised. On the multi-discriminator fusion network structure, BP neural network algorithm is used to train the multi-feature sample data including wind turbine blades, so that the network parameters tend to convergence and gradually approach the real tag. The experimental analysis shows that the algorithm effectively diagnoses and evaluates the damage degree of the blade structure, and has a high recall rate and accuracy, which proves the effectiveness and robustness of the algorithm.

Publisher

IOP Publishing

Subject

General Medicine

Reference23 articles.

1. Numerical simulation of competing mechanism between pitting and micro-pitting of a wind turbine gear considering surface roughness;Zhang;Engineering Failure Analysis,2019

2. Structural failure test of a 52.5 m wind turbine blade under combined loading;Guo;Engineering Failure Analysis,2019

3. Application of seasonal auto-regressive integrated moving average model in forecasting the incidence of hand-foot-mouth disease in Wuhan, China;Peng;Current Medical Science,2017

4. Protocol for the estimation of drinking water quality index (DWQI) in water resources: Artificial neural network (ANFIS) and Arc-Gis;RadFard;MethodsX,2019

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3