Mathematical model development of modified flow dispersion stress tensor in 2-D curvilinear flow domain

Author:

Akhtar M.P.,Sharma Nayan,Ojha C. S. P.

Abstract

Abstract For 2-D simulation of curvilinear flow field, use of momentum equations involves flow dispersion stress terms. Dispersion Stress terms take into account the effect of secondary flow variation arisen due to integration of the product of discrepancy between depth averaged velocity and the true velocity distributions. The objective of this paper is to present empirical mathematical functions to evaluate these terms. These terms can be incorporated in the 2D depth averaged flow equations as an additional source/sink term. In this work, the derivation is done to get revised set of empirical relations are later used in development of enhanced 2D numerical model. When compared with earlier investigations, the proposed formulations are simplified and numerically compatible. It is expected that modified formulation for flow dispersion stress tensor will lead to more realistic and improved simulation of flow field in curved flow domain.

Publisher

IOP Publishing

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3