On appropriate Finite Element discretization in simulation of gas-based hot sheet metal forming processes

Author:

Baru N. K.,Teeuwen T.,Teller M.,Hojda S.,Braun A.,Hirt G.

Abstract

Abstract Gaseous medium is being used for sheet metal forming at elevated temperatures, especially for lightweighting purposes. These processes enable forming of high strength alloys of a wide range of thickness due to low material flow stress as well as improved formability. In these processes, the resulting component properties are an interplay of numerous parameters. Instead of cost and time intensive experiments, FEM aids an effective and economic process optimization and enables a better understanding of the influence of process parameters on the component properties. In the current study, the importance of appropriate discretization of the workpiece within a gas-based hot sheet metal forming process is investigated based on a laboratory scale component. AA6010 sheet metal blanks of different thicknesses are studied numerically and experimentally. Simulations with different types of elements are performed and the evolution of process parameters as well as their influence on the final component thickness are analysed. Different element types resulted in noticeable difference in the simulation results and this difference also varies with the initial sheet thickness. Upon further experimental validation, the suitable element type for workpiece discretization is suggested, which enables practitioners to get reliable results via FE simulation of these processes.

Publisher

IOP Publishing

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3