Author:
Pilthammar J.,Skâre T.,Galdos L.,Frojdh K.,Ottosson P.,Wiklund D.,Carlholmer J.,Sigvant M.,Ohlsson M.,Argandoña E. Sáenz de,Abbasi F.,Sarasua O.,Garro A.,Rutgersson W.
Abstract
Abstract
Cost and time for die tryout are significant within the car industry, and elastic deflections of dies and presses are most commonly not considered during the virtual die design and forming simulation phase. Because of this, active surfaces of stamping dies are only cambered based on previous experiences of tool types and presses. However, almost all stamping dies and presses are unique, and available experiences are not valid for new materials. Partners within the Eureka SMART Advanced Manufacturing research project CAMBER have developed advanced deflection measuring devices to quantify the elastic deformations of presses. Using these measurements, cambering methodologies can be utilized in sheet metal forming simulations. Important breakthroughs in recent years enabling the cambering methodology consists of efficient simulation strategies for full scale simulations with elastic dies and optimization techniques for creating substitutive press structures based on measurements. Furthermore, modern press deflection measurement methods are beneficial in applications such as Industry 4.0, predictive maintenance, product quality control, etc. through a more advanced understanding and live monitoring of the press system.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献