Finite Element Stress Analysis of Acrylic with Embedded Optical Fibre Sensors

Author:

Kurdi O,Widyanto S A,Haryadi G D,Suprihanto A,Yulianti I,Rahman A

Abstract

Abstract Finite element (FE) techniques are used to analyse mechanical stress in optical fibre sensors embedded in acrylic. The models represent many features observed in real materials with embedded fibre optic for stress and strain sensor application such as for health monitoring of structures. Three thicknesses, namely 6 mm, 8 mm and 10 mm of acrylic were analyzed with the optical fibre embedded at the mid-plane of acrylic. The simulation was done by implementing Finite Element Method using ABAQUS software. Contact between acrylic and optical fibre was modelled as frictionless and with friction. The friction coefficient was varied for various values which are 0.3, and 0.5. This paper investigates the effect of friction coefficient and the effect of fibre optic’s depth embedded in acrylic to the their von Misses stress. Simulation result shows that the higher the friction coefficient the higher von Misses stress in fibre optic and the higher von Misses stress in acrylic. The higher the fibre’s depth the higher von Misses stress in fibre and the lower von Misses stress in acrylic. The maximum stress occurred for the coefficient of friction 0.5, with magnitude of 116.4 MPa and 58.72 MPa for acrylic and optical fibre respectively. The most significant effect of fibre’s depth to the von Misses stress was obtained for 1 mm depth for acrylic and 5 mm for optical fibre, with magnitude of 72.64 MPa and 57.65 MPa for acrylic and optical fibre respectively.

Publisher

IOP Publishing

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3