The prediction of building heating and ventilation energy consumption base on Adaboost-bp algorithm

Author:

Sun Lunan,Wei Qi,He Lipeng,Yin Zihe

Abstract

Abstract Particularly In the nowadays, under the environment of increasing severe weather, buildings become consumers of energy resources that cannot be ignored, the hvac is one of the most important energy consuming equipment in the building, it has great practical significance and practical guidance for energy consumption prediction and optimization to reduce overall energy consumption and cost. The Adaboost-BP model based on integrated learning algorithm can not only improve the prediction accuracy of BP neural network algorithm model, at the same time, the defects of BP neural network algorithm such as falling into local minimum and slow convergence speed can be corrected. Moreover, the integrated learning algorithm has low requirements for weak classifiers and almost no need to adjust its parameters, so it has a wide range of use and good robustness. The building cannot be ignored as energy resource consumers, and hvac, as one of the main energy consumption equipment in buildings, prediction and energy consumption in the energy saving optimization to reduce the overall energy consumption, reduce costs. The Adaboost-BP model based on integrated learning algorithm can not only improve the prediction accuracy of BP neural network algorithm, but also correct the defects of BP neural network algorithm such as falling into local minimum value and slow convergence speed. Moreover, the integrated learning algorithm has very low requirements for weak classifiers and almost no need to adjust its parameters, so it has a wide range of use and good robustness .In conclusion, the energy consumption forecasting and optimization scheduling based on data-driven have good effect to optimize the energy consumption structure of office buildings, save energy resources, reduce greenhouse gas emissions, and reduce the impact on the power grid caused by the increase of demand from users during the peak period of electricity consumption, also provides a design idea for distributed energy network design.

Publisher

IOP Publishing

Subject

General Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cost-effective optimization for electric vehicle charging in a prosumer household;Solar Energy;2024-01

2. Design and Implementation of College Students’ Psychological Prediction System Based on BP Algorithm;Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering;2024

3. Integrated Model of Building Energy Consumption Prediction Based on Different Algorithms;Lecture Notes on Data Engineering and Communications Technologies;2023

4. AI-big data analytics for building automation and management systems: a survey, actual challenges and future perspectives;Artificial Intelligence Review;2022-10-15

5. Analysis of Dynamic Relationship between Energy Consumption and Economic Growth Based on PVAR Model;International Transactions on Electrical Energy Systems;2022-10-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3