2D/3D local strain analysis of layered metal composites with a strength-ductility synergy

Author:

Li D Y,Huang M,Xia Y P,Xu C,Gan W M,Geng L,Fan G H

Abstract

Abstract A long-standing question is why layered structures can overcome the strength-ductility trade-off and achieve synergy in this relationship. In this paper, layered Ti/Al, Ti/Ti metal materials are taken as examples to investigate the influence of a heterogeneous layered structure on their deformation behavior from a viewpoint of the local strain. In-situ neutron diffraction, DIC and synchrotron radiation tomography were performed to obtain lattice strain evolution (elastic stage), local strain evolution (plastic stage), and crack initiation and propagation (fracture stage), respectively. It is found that strain delocalization is the key to achieving a strength-ductility synergy in layered materials, and that layered structures can influence the local strains from start to failure, which improves strain compatibility between the component layers. In-situ tracking of local strains based on 2D/3D characterization methods during entire deformation process deepens our understanding of the deformation behavior of layered materials.

Publisher

IOP Publishing

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3