Numerical modelling of high-power laser spot melting of thin stainless steel

Author:

Bunaziv I,Danielsen M H,Eriksson M,Ma X,Ren X,Godinez Brizuela O E,Skjetne P

Abstract

Abstract Numerical modelling is an important scientific tool in laser materials processing to study different melting, evaporation, and solidification phenomena. It can assist in understanding why certain defects are formed, and thus may provide solution paths for how to decrease certain defects and to increase the quality of a product. Laser spot melting in heat conduction mode represents a simple case and is an excellent first step to build and test solvers prior to moving on to more complicated cases such as laser keyhole welding of thick plates. Modelling of laser spot melting requires only a limited computational domain and allows more complex physics to be added gradually. In this work, a thin 3.0 mm thick stainless steel plate was melted with high-power fiber laser and numerically simulated using a native and custom-build solver based on the VOF method within OpenFOAM. The process was captured with a high-speed imaging camera and simulation results are compared with the experimental results. It was found that temperature-dependent surface tension plays a vital role in controlling melt flow directions within melt pool.

Publisher

IOP Publishing

Subject

Industrial and Manufacturing Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3