Tower structure optimization through finite element analyses

Author:

Vlădulescu F,Constantinescu D M

Abstract

Abstract In this study the objective is to obtain an optimal configuration for an antenna lattice tower which has an imposed height of 30 m. For this purpose, a variable geometric model which considers specific working parameters is created, and a 3D finite element (FE) model is generated by using beam and shell elements for an optimization study. The 3D FE analysis is updated automatically for each variant of the geometric model. The response surface methodology (RSM) is used together with the central composite design (CCD) approach as to optimize the response of the lattice tower. The model of the tower is subject to static and dynamic loadings, including earthquake analysis. A response spectrum analysis based on Rosenblueth's Double Sum Combination (ROSE) is performed because the natural frequencies resulting from the modal analysis have close values. The optimization solution algorithm used for the tower optimization is the nonlinear programming by quadratic Lagrangean (NLPQL), which is based on the gradient algorithm for models with only one objective function and several optimization restrictions. Out of three final candidate design solutions the one which gives the minimum mass is proposed.

Publisher

IOP Publishing

Subject

General Medicine

Reference22 articles.

1. On the experimental attainment of optimum conditions;Box;Journal of the Royal Statistical Society Series B,1951

2. Some new three level designs for the study of quantitative variables;Box;Technometrics,1960

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3