The effect of material on bipolar membrane fuel cell performance: A review

Author:

Daud S S,Norrdin M A,Jaafar J,Sudirman R

Abstract

Abstract Bipolar membrane fuel cell (BPMFC) was firstly discovered in 2000 that composed of two-layered ionic conducting membranes. The importance of BPMC development is its ability to humidify the cell when operating at a high current density that eliminates the use of the external humidification system. It is able to self-humidify the cell because of water formation at the intermediate layer from the reaction of hydrogen ion (H+) with hydroxide ion (OH). Up to now, there is no commercial bipolar membrane (BPM) in water formation configuration for the fuel cell humidifying purpose. Thus, the researcher had come out with a composition of proton exchange membrane with anion exchange membrane by the hotpressing method that allows them to carry the proton and anion simultaneously in a single cell. There are a few of polymeric-based PEM and AEM material had been selected for developing BPM such as Nafion, FumaPEM FAA3, quaternary ammonium polysulfone (QAPSF), and quaternary ammonium poly(phenylene)oxide (QAPPO). This review aims to determine the effect of material selection and design for developing BPM toward its performance in fuel cell based on published works. Besides, the potentialities of polymeric-based material are discussed, pointing out the main positive and negative effect of this BPM for fuel cell applications. As a case study, the use of different types of PEM and AEM material for BPM is particularly stressed, pointing out the main properties for its applications in BPMFC.

Publisher

IOP Publishing

Subject

General Medicine

Reference77 articles.

1. Polymer Exchange Membrane ( PEM ) Fuel Cell: A Review;Bhatt;Int. J. Current and Tech.,2012

2. PEM Fuel Cell System Control: A Review;Daud;Renewable Energy,2017

3. Power Fluctuations Suppression of Standalone Hybrid Generation Combining Solar Photovoltaic/wind Turbine and Fuel Cell Systems;Ahmed;Energy Convers. Manag.,2008

4. Short-term Effects of Controlling Fossil-fuel Soot, Biofuel Soot and Gases, and Methane on Climate, Arctic Ice, and Air Pollution Health;Jacobson;J. Geophys. Res. Atmos.,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3