Characterization of Disposable Facemasks for COVID-19 Through Colorimetric Analysis

Author:

Fraschetti E.,Puglisi D.,Domènech-Gil G.,Buzzin A.,Mastrandrea A.,Mazzetta I.,de Cesare G.,Casalinuovo S.,Quaranta S.,Caputo D.

Abstract

Many aspects of the world population’s daily life have been recently changed by the events following the SARS-COV-2 pandemic outbreak. Among all the consequences, wearing face masks has become a common routine to protect from virus transmission risks. This work presents a simple colorimetric system able to detect the carbon dioxide (CO2) saturation inside a disposable face mask, which is useful to determine the level of wear and degradation and to visually provide indications on its disposal time. The experiments were carried out by wearing a FFP2 face mask externally treated with a phenolphthalein solution and including in its breathing zone a CO2 sensor. Changes in face mask color were recorded by a camera and analyzed with ImageJ. A strong correspondence was found between the high values of CO2 detected by the sensor and the analyzed data. The results are promising and suggest further efforts in developing easy-to-use colorimetric methods as a visual indicator of the life cycle of a disposable face mask.

Publisher

IOP Publishing

Subject

General Medicine

Reference12 articles.

1. World Health Organization. WHO Director-General’s opening remarks at the media briefing on COVID-19;Ghebreyesus,2020

2. Importance of face masks for COVID-19: A call for effective public education;Tso;Clinical Infectious Diseases,2020

3. COVID-19 and public interest in face mask use;Wong;American Journal of Respiratory and Critical Care Medicine,2020

4. Face masks are new normal after COVID-19 pandemic;Rab;Diabetes and Metabolic Syndrome: Clinical Research and Reviews,2020

5. Respiratory virus shedding in exhaled breath and efficacy of face masks;Leung;Nature medicine,2020

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3