Fracture analysis of cracks terminating at the interface of elastic-piezoelectric bimaterials

Author:

Yu X,Yang Z T,Xu C H,Xing Y,Zhou Z H,Xu X S

Abstract

Abstract In this paper, the fracture behaviors of a piezoelectric-elastic bimaterial with cracks terminating at the interface are investigated by a symplectic approach. In the Hamiltonian system, the Hamiltonian forms of governing equations is derived by the Hamiltonian variational principle and a total unknown vector consisted of generalized displacements and stresses. The interface fracture problem is reduced into a symplectic eigenproblem which can be directly solved by the method of separation of variables. Thus, the total unknown vector is expanded in terms of symplectic eigenfunctions. The unknown coefficients of the symplectic series can be determined from the continuity conditions at the interface and outer boundary conditions. Consequently, exact solutions for the singular electro-elastic fields and explicit expression of electric/elastic intensity factors are obtained simultaneously. Results indicate that the electro-elastic singularities and intensity factors only depend on the first few terms of symplectic eigenfunctions with non-zero eigenvalues. Numerical examples are presented to show the effects of key influencing factors on the singularity orders and intensity factors of such interface cracks. Some new results are given also.

Publisher

IOP Publishing

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3