Preserving Low-Quality Video through Deep Learning

Author:

Galteri Leonardo,Seidenari Lorenzo,Uricchio Tiberio,Bertini Marco,Del Bimbo Alberto

Abstract

Abstract Lossy video stream compression is performed to reduce the bandwidth and storage requirements. Moreover also image compression is a need that arises in many circumstances.It is often the case that older archive are stored at low resolution and with a compression rate suitable for the technology available at the time the video was created. Unfortunately, lossy compression algorithms cause artifact. Such artifacts, usually damage higher frequency details also adding noise or novel image patterns. There are several issues with this phenomenon. Low-quality images can be less pleasant to persons. Object detectors algorithms may have their performance reduced. As a result, given a perturbed version of it, we aim at removing such artifacts to recover the original image. To obtain that, one should reverse the compression process through a complicated non-linear image transformation. We propose a deep neural network able to improve image quality. We show that this model can be optimized either traditionally, directly optimizing an image similarity loss (SSIM), or using a generative adversarial approach (GAN). Our restored images have more photorealistic details with respect to traditional image enhancement networks. Our training procedure based on sub-patches is novel. Moreover, we propose novel testing protocol to evaluate restored images quantitatively. Differently from previously proposed approaches we are able to remove artifacts generated at any quality by inferring the image quality directly from data. Human evaluation and quantitative experiments in object detection show that our GAN generates images with finer consistent details and these details make a difference both for machines and humans.

Publisher

IOP Publishing

Subject

General Medicine

Reference34 articles.

1. CAS-CNN: A deep convolutional neural network for image compression artifact suppression;Cavigelli,2017

2. Postprocessing of compressed images via sequential denoising;Dar;IEEE Transactions on Image Processing,2016

3. Compression artifacts reduction by a deep convolutional network;Dong,2015

4. Generating images with perceptual similarity metrics based on deep networks;Dosovitskiy,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application of Computer Image Transformation Technology in Fashion Design;Lecture Notes on Data Engineering and Communications Technologies;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3