Online estimation of control parameters of FACTS devices for ATC enhancement using artificial neural network

Author:

Karuppasamy Pandiyan M,Agnes Idhayaselvi V,Danalakshmi D,Sheela A

Abstract

Abstract The deregulated electricity sector needs an improvement in the Available Transfer Capability (ATC) towards the maintenance of power network at balanced condition and to utilize the system in effective manner. Independent System Operator (ISO) maintains the ancillary services by ensuring the reliability of the power system. One of the major functions of ancillary service provider is to maintain the voltage and power flow at stable level. To improve the ATC, both the line power flow and bus voltage profile have to be modified and it is taken care by the ISO. The major limiting criterion for ATC is bus voltage profile. It is well known that the device Thyristor Controlled Series Compensation TCSC which is one of the Flexible AC Transmission System (FACTS) devices can modify the line flow by adjusting the line reactance and Static VAR compensator (SVC) can improve the bus voltage profile by injecting reactive power to the bus. In this research, an Artificial Neural Network (ANN) based estimation of control parameter of FACTS devices such as TCSC and SVC for ATC enhancement is used. The proposed approach uses two different ANN network to find the different TCSC and SVC control parameters to improve the ATC values without violating its voltage constraints for real time transactions. The ANN algorithms such as Radial Basis Function (RBF) as well as Back Propagation Algorithm (BPA) were used to find the TCSC and SVC Parameters and the results are compared. The proposed methods are demonstrated through Reliability Test System (RTS) of IEEE 24 bus. The simulation output represents the suitability of the anticipated method for Real Time estimation of FACTS devices control parameter settings for ATC Enhancement.

Publisher

IOP Publishing

Subject

General Medicine

Reference25 articles.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3