Reduction of Young’s modulus for a wide range of steel sheet materials and its effect during springback simulation

Author:

Wagner L.,Wallner M.,Larour P.,Steineder K.,Schneider R.

Abstract

Abstract Springback is among the key issues to be addressed in order to facilitate the application of AHSS in the automotive body. Since numerical simulations have become a standard tool during process design in automotive panel production, advanced material models considering springback-related material properties are increasingly getting into the focus. Next to the Bauschinger-Effect, describing early re-yielding during load reversal, also a reduction of Young’s modulus with increasing plastic strain is depicted in several material models implemented in different FEM codes. Herein, we focus on this Young’s modulus reduction. The initial Young’s modulus as well as its reduction are measured from uniaxial tensile tests with multiple unloading-reloading cycles without load reversal. Results are shown for steel sheet materials ranging from mild steels to AHSS containing retained austenite. Differences of the Young’s modulus decrease among the different steel grades are discussed with respect to their respective microstructure. Material models, depicting the Young’s modulus reduction, are fitted to the obtained data. The consequence of considering this effect during forming simulation is shown for bending-under-tension tests of DP600, representing the largest reduction.

Publisher

IOP Publishing

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3